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1 Abstract

In recent years, Generative Adversarial Networks (GANs) and Stable Diffusion Models have emerged
as prominent and highly favored approaches for generative tasks. These models have garnered
substantial attention due to their remarkable capabilities in generating high-quality and diverse
samples. In this paper, our objective is to delve into the assessment of what constitutes a ”good”
generative model. To achieve this, we undertake a comparative analysis between two cutting-edge
models: a state-of-the-art Generative Adversarial Network (DeepGAN) and a comparably complex
yet less popular generative model, namely the Variational Autoencoder (VAE). By thoroughly
examining their respective strengths, limitations, and performance characteristics, we aim to shed
light on the distinguishing factors that contribute to their effectiveness in generating synthetic data.

2 Introduction

Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) are two prominent
and distinct generative modeling frameworks that have garnered significant attention in recent years.
These models offer distinct approaches to capturing and generating complex data distributions, each
with its own strengths and limitations.

GANs, introduced by Goodfellow et al. in 2014, are based on an adversarial game between a gen-
erator and a discriminator network. The generator aims to synthesize samples that closely resemble
real data, while the discriminator’s objective is to differentiate between real and generated samples.
Through an iterative training process, GANs learn to generate increasingly realistic outputs by
constantly improving the generator’s ability to deceive the discriminator. GANs are particularly
effective at capturing fine-grained details and producing visually appealing, high-fidelity samples.

In contrast, VAEs, proposed by Kingma and Welling in 2013, are based on the principles of
autoencoders and probabilistic modeling. VAEs consist of an encoder network that maps input data
to a latent space, and a decoder network that reconstructs the data from the latent representation.
Unlike GANs, VAEs explicitly model a probabilistic latent space, enabling efficient sampling and
interpolation in this space. VAEs aim to learn a compressed and structured representation of
the data, allowing for controlled generation and interpolation in the latent space. They prioritize
the reconstruction of the input data, making them suitable for tasks that require faithful data
reconstruction.

The distinction between GANs and VAEs lies in their underlying objectives and training method-
ologies. GANs focus on the adversarial interplay between the generator and discriminator networks,
striving to achieve a dynamic equilibrium where the generator produces samples that are indistin-
guishable from real data. In contrast, VAEs aim to learn a latent space representation that facilitates
data reconstruction and controlled generation by maximizing the likelihood of the input data given
the latent representation.
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These different objectives lead to contrasting strengths and limitations. GANs excel at cap-
turing complex data distributions, generating high-quality samples, and producing visually diverse
outputs. However, GANs can suffer from mode collapse, where they fail to capture the entire data
distribution, resulting in limited diversity. VAEs, on the other hand, prioritize data reconstruction
and offer a structured latent space that allows for controlled generation and interpolation. How-
ever, VAEs may struggle to capture fine-grained details and can sometimes produce blurry or less
visually appealing samples.

3 Method/Architecture

For the BigGan, we have the model architecture as described in the original paper [BDK19]:

We also implemented and trained the BigGan-Deep for comparison:
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The residual Blocks are modeled as the following: (b) Is the Generator’s Residual Block, and (c) is
the Discriminator’s Residual Block [BDK19]

In this paper, we train the models on the Cifar-10 and Labeled Faces in the Wild datasets,
which are of resolutions 32x32 and 45x45 respectively. Since the architecture as shown in the above
chart is for images of resolution 128x128, the model would be incompatible with these datasets.

To combat this and stay as loyal to the above described architecture, we simply end the gen-
erator early/slightly modify the up-scaling, where the output would be/would be near the desired
resolution. In the discriminator, we simply use log2(imagewidth) number of resblock downs, and
always start at 16*ch as the beginning number of channels for the resblock chain. We also trained
with the BigGan-deep architecture to compare performance.

To reduce independent variables, and for simplicity, we use the BigGan Discriminator and
Generator as the VAE’s Encoder and Decoder as well, respectively. The only difference between
the VAE and the DeepGan architecture used in this paper is the output size of the fully connected
layer at the end of the Discriminator/Encoder, 1 and z, respectively.

Therefore, the only independent Variables in our experiement of comparing the GAN and the
VAE are the chosen hyperparameters and training objective.

For the GAN, we use the following vinalla gan Loss function:

Loss(D) = − 1
n

∑n
i=1 lnD(x) + ln(1−D(G(z))), Loss(G) = − 1

n

∑n
i=1 lnD(G(z))

Where the objective is to minimize both losses cyclically
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For the VAE we use the KL divergence in addition to reconstruction loss as described by the original
VAE paper [KW13], but we instead use simple MSE for the reconstruction loss:

4 Experiments

Datasets:
To test the generative power of the models, we train and test on datasets of differing difficulty.

Labeled Faces in the Wild, which is relatively ( easy) for the task of generation due to its extremely
centered subjects and lack of variation, in comparison to other datasets. In contrast, we also train
on Cifar-10, which is a relatively difficult dataset for generative models, given asymmetrical scenes,
un-centered subjects, and 10 different classes.

Architectures:
Further detailed in the Method section, we train on both datasets for both models, using both

the BigGan and BigGan-deep architectures for each combination. We found that the BigGan-deep
generally performs better. For both architectures, we also attempt adding more and more residual
blocks before the other upscaling/downscaling residual blocks, and unsurprisingly, adding more
residual blocks/parameters solely helps performance given enogh training time.

For the VAE, there is the architecture hyperparameter of the dimensionality of the latent space,
which is also the output dimension of the VAE encoder. We tested z-dimensions of size 128, 256,
and 512, under the Labeled Faces in the Wild dataset only. We found that, in regard to the VAE,
increasing the dimension of the latent space z increased both validation reconstruction accuracy
and Inception Score for the decoder’s generative ability.

Optimization:
Adam caused much quicker convergence, for all models, for all datasets.
For the GAN, we attempted different learning rates from the described 2e-4 lr for the Dis-

criminator and 5e-5 for the Generator. Just as the original paper[BDK19] found, increasing the
Discriminator learning rate by a factor of 10, to 2e-3 caused the discriminator to outpace the gen-
erator and vastly slow convergence. On the other hand, increasing the Generator’s lr by a factor
of 10 while keeping the D lr constant, caused complete mode collapse, which the model couldn’t
recover from. Most likely because the generator was able to fool the discriminator because it learns
quicker than the discriminator, fooling it with one output, while the discriminator wasn’t able to
catch up and deter this action.

Activation Functions:
Usually, Leaky ReLU, with a scaling factor of 0 to 0.2 is commonplace in GANs, and as such,

we attempted to use this activation function in the BigGan and BigGan-Deep networks, however
this unexpectedly hurt performance under all circumstances, so we stuck to vanilla ReLU.
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5 Results and Analysis

(1) GAN best results - Cifar-10 Car & Frog, (2) VAE best gen. results - Cifar-10 Horse & Plane
(3) GAN best results - LFW, (4) VAE best gen. results = LFW
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Cifar-10 Results:

Labeled Faces in the Wild Results:

We observed that both models demonstrated improved performance when the number of resid-
ual blocks was increased by two, resulting in a nearly doubled parameter count. Additionally,
transitioning from the standard BigGan architecture to the BigGan-Deep architecture also yielded
performance enhancements, despite the fact that the parameter count did not change significantly.
It is noteworthy to mention that the BigGan-Deep architecture, as indicated in the original BigGan
paper[BDK19], actually possesses fewer parameters compared to its counterpart, BigGan. Con-
sequently, we can conclude that the superior performance of BigGan-Deep over BigGan can be
attributed solely to its advanced architecture.

Turning our attention to the comparison between the VAE and GAN, the recorded Inception
and FID scores provide intriguing insights. Specifically, when evaluated on the complex Cifar-10
dataset, the GAN outperformed the VAE comprehensively in all aspects, with a notable emphasis
on significantly higher IS scores. This disparity is also evident in the visualized results, where the
VAE’s output diversity is limited compared to the GAN. However, in the case of the Labeled Faces
in the Wild dataset, although the VAE achieved better FID scores across all instances, its IS scores
remained considerably lower compared to the GAN, highlighting the VAE’s limitations in generating
outputs with high variety. This discrepancy can be seen in the results of the generated faces as
well. While the GAN did produce faces that had glasses, mustaches, and different ethnicities, the
VAE did none of the above.

Since the model architectures for the VAE and the GAN are nearly identical, we can infer that
the difference in model performance is mainly due to the different training objectives

A GAN is able to learn to create representations of the dataset through self play, between the
generator and the discriminator. Intuitively, it should make sense that, ideally, the GAN scores a
much higher Inception Score, due to this interplay. I.E. If the generator were to produce only one
image, it doesn’t matter how realistic the image is, the discriminator should be able to learn that
the image is fake, and penalize the gan for producing such similar images.

The VAE has no such fail safe for penalizing similar generated output. In fact, the VAE’s only
objectives are to minimize the squared difference of the input versus the output, and to move the
latent space closer to the Gaussian distribution. Since the VAE’s decoder, the generative part of
the model, is learning to recreate images through reconstruction of an original image, given only a
lossy compressed version of the original. Therefore, I believe that the model’s most probabilistic
approach is to recreate the image based on maximizing the probability that the given image is
from the dataset. Intuitively, then, the VAE will default to producing images that represent the
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majority features of the dataset, to minimize loss. Therefore, we can hold the VAE’s training
objective accountable for the low IS.

6 Conclusion

In this research paper, we conducted a comparative analysis of two prominent generative modeling
frameworks: Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs). Our
objective was to assess what constitutes a ”good” generative model and shed light on the factors
that contribute to their effectiveness in generating synthetic data.

Through our experiments and analysis, we observed that GANs excel in capturing complex
data distributions, producing high-quality samples, and generating visually diverse outputs. Their
adversarial training process allows them to learn fine-grained details and produce visually appealing
results. However, GANs can suffer from mode collapse, limiting the diversity of their generated
samples.

On the other hand, VAEs prioritize faithful data reconstruction and offer a structured latent
space that enables controlled generation and interpolation. They learn a compressed representation
of the data and perform well in tasks that require accurate reconstruction. However, VAEs may
struggle to capture fine-grained details and can sometimes produce blurry or less visually appealing
samples.

The discrepancy in performance between GANs and VAEs can be attributed to their different
training objectives. GANs focus on achieving a dynamic equilibrium between the generator and
discriminator networks, while VAEs aim to maximize the likelihood of the input data given the
latent representation.

Our experiments also showed that architectural variations, such as increasing the number of
residual blocks or transitioning to advanced architectures like BigGan-Deep, can improve the per-
formance of both GANs and VAEs.

Overall, GANs and VAEs offer distinct approaches to generative modeling, each with its own
strengths and limitations. The choice of which model to use depends on the specific requirements of
the task at hand. GANs are suitable for tasks that prioritize capturing complex data distributions
and producing visually diverse outputs, while VAEs are more appropriate for tasks that emphasize
faithful data reconstruction and controlled generation.

Future research could explore hybrid approaches that combine the strengths of GANs and VAEs
or investigate novel generative modeling frameworks to further enhance the quality and diversity
of generated samples.

In conclusion, understanding the characteristics and trade-offs of different generative models,
such as GANs and VAEs, contributes to advancing the field of generative machine learning and
enables researchers and practitioners to choose the most suitable model for their specific needs.
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7 Links

All of the code, except for preparing the LFW dataset, was mine, completely from scratch:
GitHub for VAE: https://github.com/Xander-Hinrichsen/Variational-Autoencoder-VAE-.git
GitHub for BigGan: https://github.com/Xander-Hinrichsen/biggan.git
Weights and Biases logging: https://wandb.ai/xhinrichsen/vae-faces?workspace=user-xhinrichsen
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